IR-4 Provides Economic Viability

The specialty food crop value in Oregon is $1.4 billion\(^1\)

– Specialty crops include most vegetables, fruits, nuts, herbs, nursery and flower crops.

IR-4’s research helped to register Emergency Use Exemptions\(^2\) for Oregon, that helped prevent a loss of $349.6 million\(^3\) from occurring (see back). Many of these have been turned to permanent registrations. In 2003, ninety-five of the 120 Emergency Use Exemptions that were converted to final registrations were credited to IR-4 by the EPA.

IR-4 Provides Research in Support of a Safe and Secure U.S. Food Supply

The Reduced Risk chemicals that IR-4 researches receive clearances from the Environmental Protection Agency (EPA), and are able to control pests that destroy crops without harming the individuals that use them, the food that is harvested, or the environment in which the crops are grown.

IR-4 Helps U.S. Farmers Compete in a Global Economy

With farm production costs rising every day, IR-4 research helps growers stay ahead of global competition, by producing safe and effective pest management solutions for their high value specialty crops.

\(^1\) 1997 Census of Agriculture
\(^2\) Section 18
\(^3\) Figures are cumulative from 1998 to 2003 and are gathered from Economic Impact Statements on file with the EPA
What IR-4 Does for Oregon

Clearances On Some Important Oregon Crops

ALFALFA
- Aluminum Phosphide
- Glyphosate
- MCPA
- Pronamide

APPLE
- 2,4-D
- Aluminum Phosphide
- Codling Moth
 - Granulosis Virus

BARLEY
- Azoxystrobin
- Glyphosate
- Spinosad
- Tebuconazole (Sec. 18)

BEET (GARDEN)
- Bacillus thuringiensis
- Endothall
- Sethoxydim

BLACKBERRY
- Bifenthrin
- Captan
- Chlorpyrifos
- Esfenvalerate
- Glyphosate
- Malathion
- Myclobutanil
- Norflurazon
- Oxyfluorfen
- Sethoxydim

BLUEBERRY
- 2,4-D
- Captan
- Chlorothalonil
- Chlorpyrifos
- Esfenvalerate

BLUEBERRY cont.
- Ethephon
- Fenhexamid
- Fluazinam
- Fenbuconazole (Sec. 18)
- Fosetyl-Al
- Glyphosate
- Hexaconazole
- Methyl Anthranilate
- Norflurazon
- Pyriproxyfen
- Tebuconazole
- Terbacil
- Ziram

BOYSENBERRY
- Chlorpyrifos
- Glyphosate

BROCCOLI
- Bacillus thuringiensis
- Chlorpyrifos
- Glyphosate
- Malathion
- Oxyfluorfen
- Paraquat
- Sodium Hypochlorite

BROCCOLI cont.
- Endothall
- Glyphosate
- Malathion
- Methamidophos
- Norflurazon
- Oxyfluorfen
- Paraquat
- Sodium Hypochlorite

BRUSSELS SPROUTS
- Bacillus thuringiensis
- Chlorpyrifos
- Dimethoate
- Endothall
- Sodium Hypochlorite

CAULIFLOWER
- Bacillus thuringiensis
- Chlorpyrifos
- DCPA
- Endothall
- Glyphosate
- Malathion
- Metalaxyl + Mancozeb
- Paraquat
- Permethrin

CELERY
- Bacillus thuringiensis
- Carbaryl
- Glyphosate
- Malathion
- Methamidophos
- Sethoxydim

CRANBERRY
- 2,4-D
- Acephate
- Azoxystrobin
- Chlorothalonil
- Chlorpyrifos
- Metalaxyl + Mancozeb
- Metalaxyl
- Pyridaben
- Sethoxydim

CABBAGE
- Bacillus thuringiensis
- Chlorpyrifos
- Malathion
- Methyl Anthranilate
- Norflurazon
- Oxyfluorfen
- Paraquat
- Sethoxydim
- Thiabendazole

CABBAGE cont.
- Endothall
- Glyphosate
- Metalaxyl
- Mancozeb
- Paraquat
- Sodium Hypochlorite

CANTALOUPE
- Bacillus thuringiensis
- Dimethomorph
- Glyphosate
- Imidacloprid
- Malathion
- Metalaxyl + Mancozeb
- Paraquat
- Permethrin

CARROT
- Bacillus thuringiensis
- Chlorpyrifos
- Iprodione
- Malathion
- Methomyl
- Metalaxyl
- Methyl Anthranilate
- Norflurazon
- Oxyfluorfen
- Paraquat
- Sethoxydim
- Thiabendazole

CRAZY (HAZELNUT)
- 2,4-D
- Chlorothalonil
- Fenamiphos

GARLIC
- Bacillus thuringiensis
- Bromoxynil
- Glyphosate
- Pendimethalin

GOOSEBERRY
- Azinphos-methyl
- Chlorpyrifos
- Esfenvalerate
- Glyphosate
- Myclobutanil
Clearances On Some Important Oregon Crops

GRAPE
- Aluminum Phosphide
- Bifenthrin
- Chlorpyrifos
- Fosetyl-Al
- Glyphosate
- Metalaxyl + Copper
- Methyl Anthranilate
- Spinosad
- Zinc Phosphide

GRASS SEED CROP
- S-Metolachlor (Sec. 18)
- Pronamide (Sec. 18)

HONEY and BEESWAX
- Bacillus thuringiensis
- Formic Acid
- Menthol

HOP
- Abamectin
- Bifenthrin
- Carfentrazone-ethyl (Sec. 18)
- Clopyralid
- Cymoxanil
- Dimethomorph
- Endothall
- Ethoprop (Sec. 18)
- Fenpyroximate
- Glyphosate
- Imidacloprid
- Myclobutanil (Sec. 18)
- Norflurazon
- Tebuconazole (Sec. 18)
- Thiamethoxam
- Trifloxystrobin
- Quinoxifen

LEEK
- Bacillus thuringiensis
- Glyphosate
- Chlorpyrifos
- Methomyl

MARJORAM
- Napropamide

MINT
- 2,4-DB
- Acephate
- Bacillus thuringiensis
- Bentazon
- Bromoxynil
- Chlorothalonil
- Chlorpyrifos
- Clothodim
- Clomazone
- Glyphosate
- Malathion
- Myclobutanil
- Pendimethalin (Sec. 18)
- Propiconazole
- Quinalofop
- Sethoxydim
- Tebuconazole
- Trifluralin

MUSTARD GREENS
- Bacillus thuringiensis
- Bensulide
- Chlorpyrifos
- Esfenvalerate
- Clothodim
- Glyphosate
- Malathion
- Methomyl
- Sodium Hypochlorite

PEAS (DRY)
- Bacillus thuringiensis
- Cyfluthrin
- Glyphosate (Sec. 18)
- MCPB
- Paraquat (Sec. 18)
- Sethoxydim
- Sodium Chlorate

PEA (SUCCULENT)
- Bacillus thuringiensis
- Clomazone
- Fosetyl-Al
- Malathion
- Pseudomonas fluorescens (EUP)

PEAR
- 2,4-D
- Codling Moth
- Granulosis Virus
- Diflubenzuron (Sec. 18)
- Diphenylamine
- Lignin Sulfonate
- Malathion
- Methomyl
- Oxytetracycline
- Permethrin

RASPBERRY
- 2,4-D
- Bifenthrin (Sec. 18)
- Captan
- Chlorpyrifos
- Glyphosate
- Malathion
- Methyl Anthranilate
- Myclobutanil

RHUBARB
- S-Metolachlor
- Chlorothalonil

SQUASH (WINTER/SUMMER)
- Bacillus thuringiensis
- Clomazone
- Dimethomorph
- Glyphosate
- Imidacloprid
- Metalaxyl + Mancozeb
- Paraquat
- Permethrin
- Halosulfuron

STRAWBERRY
- 2,4-D
- Acifluorfen
- Captan
- Chlorpyrifos
- Glyphosate
- Norflurazon
- Oxyfluorfen
- Methomyl
- Oxytetracycline
- Permethrin

Contact Information for IR-4 Regional Field Coordinators

Western Region
- Ms. Rebecca Sisco
 - 530.752.7634
 - rsisco@ucdavis.edu
- USDA-ARS
 - Dr. Paul H. Schwartz
 - 301.504.8256
 - schwartp@ba.ars.usda.gov
IR-4: A Success Story Worth Telling

Since 1963, the IR-4 Project has cooperated with researchers, producers, the agri-chemical industry and federal agencies to secure regulatory clearances for pest management products on specialty crops.

Since 2000, over 80% of IR-4's research effort has involved new pest management technology with biopesticides and Reduced Risk chemistries. This huge shift was a direct result of the focus IR-4 placed on advocating this new technology. It was accomplished through a three pronged approach consisting of partnering with the agricultural chemical companies, educating specialty crop stakeholders, and partnering with the EPA to facilitate specialty crop registrations.

IR-4 recognized that without access to the new technology it could not assist specialty crop growers. So they solicited industry’s willingness to work together on new product development strategies which, for the first time, included specialty crops in their development plans. The foundation for this close working relationship was crop grouping, where studies on a few key crops would allow for registration on many more crops; many of those were specialty crops.

The other aspect of IR-4’s emphasis on new technology was the educational facet. It became clear that with reduced staffs in many of the companies due to mergers, federal and state research/extension scientists were not always given the ability to test the new materials. IR-4 instituted a mechanism through publication of New Pest Control Products/Transition Solutions List to inform the public about the virtues of the new technology to assist in the transition away from FQPA vulnerable crop protection tools.

Today, IR-4 continues to work as a model government funded program due to unique partnerships formed between the USDA (CSREES and ARS), the IR-4 Headquarters and Regional staff, the land grant university system, the crop protection industry, commodity and grower groups and the Environmental Protection Agency (EPA).

Oregon Agriculture is Heavily Dependent on Specialty Crops

IR-4 thanks the entire Congressional delegation from Oregon for their support.

Estimated Potential Loss Without Use of IR-4 Based Emergency Use Exemptions

<table>
<thead>
<tr>
<th>Crop</th>
<th>Economic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>$ 7,000,000</td>
</tr>
<tr>
<td>Blueberry</td>
<td>$ 33,900,000</td>
</tr>
<tr>
<td>Caneberries</td>
<td>$ 56,400,000</td>
</tr>
<tr>
<td>Canola</td>
<td>$ 1,000,000</td>
</tr>
<tr>
<td>Cranberry</td>
<td>$ 2,000,000</td>
</tr>
<tr>
<td>Dry Pea, chick, lentil</td>
<td>$ 200,000</td>
</tr>
<tr>
<td>Grass grown for seed</td>
<td></td>
</tr>
<tr>
<td>except bermudagrass</td>
<td>$ 166,600,000</td>
</tr>
<tr>
<td>Hop</td>
<td>$ 14,700,000</td>
</tr>
<tr>
<td>Mint</td>
<td>$ 23,500,000</td>
</tr>
<tr>
<td>Peas (dry) Harvest Aid</td>
<td>$ 1,200,000</td>
</tr>
<tr>
<td>Raspberry</td>
<td>$ 1,700,000</td>
</tr>
<tr>
<td>Strawberry</td>
<td>$ 30,900,000</td>
</tr>
<tr>
<td>Sugar Beet</td>
<td>$ 10,500,000</td>
</tr>
</tbody>
</table>

Total: $349,600,000

1 Figures are cumulative from 1998 to 2003 and are gathered from Economic Impact Statements on file with the EPA

2 Section 18

Estimated Potential Loss Without Use of IR-4 Based Emergency Use Exemptions for Oregon