IR-4 Provides Economic Viability

The specialty food crop value in Minnesota is $673.8 million. Special crops include most vegetables, fruits, nuts, herbs, nursery and flower crops. IR-4’s research helped to register Section 18 Emergency Exemptions for Minnesota that helped prevent a loss of $288.4 million from occurring (see back). A registration is granted by the Environmental Protection Agency (EPA) for a particular pest control product on a specific crop. In 2003, ninety-five of the 120 Section 18 Emergency Exemptions that were converted to final registrations were credited to IR-4 by the EPA.

IR-4 Provides Research in Support of a Safe and Secure Food Supply

The Reduced Risk chemicals that IR-4 researches receive clearances from the Environmental Protection Agency (EPA), and are able to control pests that destroy crops without harming the individuals that use them, the food that is harvested, or the environment in which the crops are grown.

IR-4 Helps US Farmers Compete in a Global Economy

With farm production costs rising every day, IR-4 research helps growers stay ahead of global competition, by producing safe and effective pest management solutions for their high value specialty crops.

Major funding for IR-4 is provided by Special Research Grants and Hatch Act Funds from USDA-CSREES, in cooperation with the State Agricultural Experiment Stations, and USDA-ARS. To learn more about IR-4 programs, visit the IR-4 web site at www.ir4.rutgers.edu
Barley
- Azoxystrobin
- Glyphosate
- Spinosad
- Tebuconazole (Sec. 18)

Basil
- Napropamide
- Spinosad

Bean (Dry)
- Bacillus thuringiensis
- Chlorothalonil
- Cyromazine
- Halosulfuron
- Imazamox (Sec. 18)
- Sodium Chlorate

Beet (Garden)
- Bacillus thuringiensis
- Endothall
- Sethoxydim

Blueberry
- 2,4-D
- Captan
- Chlorothalonil
- Chlorpyrifos
- Esfenvalerate
- Ethephon
- Fenhexamid
- Fluazifop
- Fosetyl-Al
- Pyriproxyfen
- Fosetyl-Al
- Glyphosate
- Hexazinone
- Methyl Anthranilate
- Norflurazon
- Tebufenozide
- Terbacil
- Ziram

Brussels Sprouts
- Baciulus thuringiensis
- Chlorpyrifos
- Dimethoate
- Endothall
- Sodium Hypochlorite

Cabbage
- Bacillus thuringiensis
- Clopyralid
- Chlorpyrifos
- Clomazone
- DCPA
- Endothall
- Glyphosate
- Malathion
- Methomyl
- S-metolachlor
- Oxyniluron
- Paraziquat
- Sodium Hypochlorite

Canola
- Clopyralid (Sec. 18)
- Clopyralid
- Thiophanate-methyl
- Sethoxydim
- Trifluralin

Celery
- Bacillus thuringiensis
- Carbaryl
- Glyphosate
- Malathion
- Methamidophos
- S-metolachlor
- Pendimethalin

Crayfish Apple
- 2,4-D
- Acrepate
- Azoxystrobin
- Clopyralid
- Chlorothalonil
- Chlorpyrifos
- Cryolite
- Ferbam
- Fosetyl-Ak
- Glyphosate
- Maleic Hydrazide
- Metalaxyl
- Pyridaben
- Sethoxydim
- Tebufenozide

Cucumber
- Bacillus thuringiensis
- Clomazone
- Dimethomorph
- Glyphosate
- Metalaxyl + Copper
- Methyl Anthranilate
- Spinosad
- Zinc Phosphate

Dill
- Bacillus thuringiensis
- Carbrally
- Prometryn

Eggplant
- Bacillus thuringiensis
- Bifenthrin
- Glyphosate
- Hexakis
- Paraziquat
- Permethrin

Elderberry
- Bacillus thuringiensis
- Esfenvalerate
- Glyphosate

Endive (Escarole)
- Bacillus thuringiensis
- Fluazifop
- Imazethapyr
- Sethoxydim

Garlic
- Bacillus thuringiensis
- Chlorpyrifos
- Methomyl

Gooseberry
- Acrepate
- Azinphos-methyl
- Chlorpyrifos
- Fosetyl-Al
- Glyphosate
- Metalaxyl

Grape
- Bacillus thuringiensis
- Bifenthrin
- Chlorpyrifos
- Fosetyl-Al
- Glyphosate
- Melanaphos-methyl
- Myclobutanil

Honey and Beeswax
- Bacillus thuringiensis
- Formic Acid
- Menthol

Horseradish
- Bacillus thuringiensis
- DCPA
- Methomyl
- Oxyfluorfen
- Permethrin
- Sethoxydim

Kale
- Bacillus thuringiensis
- Chlorpyrifos
- Methomyl
- PCNB
- Sodium Hypochlorite

Kohlrabi
- Bacillus thuringiensis
- Chlorpyrifos
- DCPA
- Endothall
- Esfenvalerate
- Methomyl
- Sodium Hypochlorite

Leek
- Bacillus thuringiensis
- Chlorpyrifos
- Methomyl

Lima Bean
- Bacillus thuringiensis
- Sodium Chlorate
- MAPLE SAP
- Carbrally

Marigold
- Hexakis
- MARJORAM
- Napropamide

Mint
- 2,4-DB
- Acrepate
- Bacillus thuringiensis
- Bentazon
- Bromoxynil
- Chlorothalonil
- Chlorpyrifos
- Clopyralid
- Glyphosate
- Metalaxyl
- Methyl Anthranilate
- Spinosad
- Zinc Phosphate

Rosemary
- Hexakis
- Sodium Chlorate
- Sodium Hypochlorite
Clearances On Some Important Minnesota Crops

MINT cont.
Malathion
Paraquat
Propiconazole
Quizalofop
Sethoxydim
Tebufenozide
Trifluralin

PEAR
2,4-D
Codling Moth
Granulosis Virus
Diphenylamine
Diflubenzuron
Lignin Sulfonate
Malathion
Metomído
Oxycarboxafen
Permethrin

PEPPER (BELL)
Bacillus thuringiensis
Bifenthrin
Clomazone
Glyphosate
Imidacloprid
S-metolachlor
Paraquat
Permethrin

PLUM
2,4-D
Codling Moth
Granulosis Virus
Clomazone
Fludioxonil
Iprikidone
Pronamide

PEONY
Bacillus thuringiensis
Bifenthrin
Imidacloprid
S-metolachlor
Paraquat
Sethoxydim

POTATO
2,4-D
Bacillus thuringiensis
Calcium Hypochlorite
Copper Complex
Sethoxydim
Sodium Chlorate
Spinadox
Sulfuric Acid
Thiobencarb

PUMPKIN
Bacillus thuringiensis
Clomazone
Glyphosate
Metalaxyl + Mancozeb
Paraquat

RADISH
Bacillus thuringiensis
DCPA
Metomido
Sodium Hypochlorite

RAPSEED
Bifenthrin
Glyphosate
Trifluralin

RASPBERRY
2,4-D
Bifenthrin
Captan
Chlorpyrifos
Glyphosate
Hexacis
Malathion
Mycolebutanil
Mycothiol
Permethrin
Sulfur

RHUBARB
Bacillus thuringiensis
Fluazifop
Gibberellic Acid
Napropamide
Paraquat
Pronamide
Sethoxydim

RHUBARB (SEED TREATMENT)
Bacillus thuringiensis
Imidacloprid
Paraquat
Sethoxydim

SILK BEAN
Bacillus thuringiensis
Clomazone
Glycophosate
Hexacis
Malathion
Sethoxydim

SQUASH (WINTER/ SUMMER)
Bacillus thuringiensis
Clomazone
Glyphosate
Metalaxyl + Mancozeb
Paraquat
Permethrin

TOMATO
Bacillus thuringiensis
Fluazifop
Gibberellic Acid
Napropamide
Permethrin
Pyrethrum + Piperonyl
Sethoxydim
Sulfur

TURNIP (ROOT / GREENS)
Bacillus thuringiensis
Clopyralid
Metalaxyl + Mancozeb
Paraquat
Permethrin
Sethoxydim
Spinosad

WATERCRESS
Bacillus thuringiensis
Gibberellic Acid
Glyphosate
Malathion
Sethoxydim

WATERMELON
Bacillus thuringiensis
Imidacloprid
Malathion
Paraquat
Permethrin

WHEAT
Bacillus thuringiensis
Clomazone
Glyphosate
Malathion
Paraquat
Permethrin

WHITE BEANS
Bacillus thuringiensis
Clomazone
Glyphosate
Hexacis
Malathion
Pronamide
Sethoxydim

WILD RICE
2,4-D (Sec. 18)
Aluminum Phosphate
Lagenidium giganteum
Malathion

Contact Information for IR-4 Regional Field Coordinators

Northeast Region
Ms. Edith Lurvey
315.787.2308
ell10@cornell.edu

North Central Region
Dr. Satoru Miyazaki
517.432.3100 ext. 150
cnlr4@msu.edu

Southern Region
Dr. Charles Meister
352.392.2399
cmeister@mail.ifas.ufl.edu

Western Region
Ms. Rebecca Sisco
530.752.7634
rsisco@ucdavis.edu

USDA-ARS
Dr. Paul H. Schwartz
301.504.8256
schwartp@ba.ars.usda.gov
Since 1963, the IR-4 Project has cooperated with researchers, producers, the agri-chemical industry and federal agencies to secure regulatory clearances for pest management products on specialty crops.

Since 2000, over 80% of IR-4's research effort has involved new pest management technology with biopesticides and Reduced Risk chemistries. This huge shift was a direct result of the focus IR-4 placed on advocating this new technology. It was accomplished through a three pronged approach consisting of partnering with the agricultural chemical companies, educating specialty crop stakeholders, and partnering with the EPA to facilitate specialty crop registrations.

IR-4 recognized that without access to the new technology it could not assist specialty crop growers. So they solicited industry’s willingness to work together on new product development strategies which, for the first time, included specialty crops in their development plans. The foundation for this close working relationship was crop grouping, where studies on a few key crops would allow for registration on many more crops; many of those were specialty crops.

The other aspect of IR-4’s emphasis on new technology was the educational facet. It became clear that with reduced staffs in many of the companies due to mergers, federal and state research/extension scientists were not always given the ability to test the new materials. IR-4 instituted a mechanism through publication of New Pest Control Products/Transition Solutions List to inform the public about the virtues of the new technology to assist in the transition away from Food Quality Protection Act (FQPA) vulnerable crop protection tools.

Today, IR-4 continues to work as a model government funded program due to unique partnerships formed between the USDA (CSREES and ARS), the IR-4 Headquarters and Regional staff, the land grant university system, the crop protection industry, commodity and grower groups and the EPA.

Estimated Potential Loss Without Use of IR-4 Based Section 18s for Minnesota

<table>
<thead>
<tr>
<th>Crop</th>
<th>Economic Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>$234,800,000</td>
</tr>
<tr>
<td>Sugar Beet</td>
<td>$50,800,000</td>
</tr>
<tr>
<td>Sunflower</td>
<td>$800,000</td>
</tr>
<tr>
<td>Wild Rice</td>
<td>$2,000,000</td>
</tr>
</tbody>
</table>

Total: $288,400,000

1 1997 Census of Agriculture
2 From 1998 to 2002