IR-4 Ornamental Horticulture Program
Imazamox Crop Safety

Authors: Ely Vea and Cristi L. Palmer
Date: December 20, 2016

Acknowledgements
Lori Harrison

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-34383-23710 with substantial cooperation and support from the State Agricultural Experiment Stations and USDA-ARS.
Table of Contents

Table of Contents .. 2
Table of Tables .. 3
Abstract .. 4
Introduction .. 5
Materials and Methods ... 5
Results and Summary ... 5
 Phytotoxicity ... 5
Label Suggestions .. 6
Appendix 1: Contributing Researchers .. 9
Table of Tables

Table 1. List of Imazamox treated crops with no or minimal transitory injury.......................6
Table 2. List of Imazamox treated crops with no injury at 1X but significant injury at 2X or 4X. ...6
Table 3. List of Imazamox treated crops with significant injury at 1X. ..6
Table 4. List of Imazamox treated crops where more information is needed.................................6
Table 5 Detailed Summary of Crop Safety Testing with Imazamox...7
Abstract

Imazamox (Clearcast™) was registered for the control of vegetation in and around aquatic sites and terrestrial non-crop sites in the United States in 2008. In 2009 and 2010, the IR-4 Project through researchers Beste & Frank conducted 17 trials on 14 ornamental plant species / genera examining phytotoxicity related to imazamox applications. For all 14 genera/species in these trials, more information is needed because only 1 or 2 trials were conducted (Table 4).
Introduction
Imazamox (Clearcast™) was registered for the control of vegetation in and around aquatic sites and terrestrial non-crop sites in the United States in 2008. In 2009 and 2010, the IR-4 Project, through researchers Beste & Frank, conducted 17 trials on 14 ornamental plant species / genera examining phytotoxicity related to imazamox applications.

Materials and Methods
Imazamox mixed with a non-ionic surfactant was tested as a single over-the-top application. The application rates were 0.031, 0.062 and 0.094 lb ai per acre as the 1X, 2X and 3X rates, plus a water treated control. A minimum of four plants (replicate treatments) were required. Phytotoxicity was recorded on a scale of 0 to 10 (0 = No phytotoxicity; 10 = Complete kill) one to four times from 1 to 8 weeks after initial application. For IR-4 testing, protocol 10-010 was used. For more detailed materials and methods, please see protocol at http://ir4.rutgers.edu/ornamental/OrnamentalDrafts.cfm

Imazamox was supplied to researchers (See researchers in Appendix 1) by SePro.

Results and Summary
Phytotoxicity
Based on the type and nature of injury seen with pesticide applications, tested plant species /genera were placed into three categories: 1) no significant phytotoxicity or growth differences from the untreated check or any injury was transitory, 2) no or minimal transitory injury seen at the 1X rate, but the 2X and/or 4X rates did cause significant phytotoxicity, 3) significant injury sufficient to recommend growers not utilizes imazamox, and 4) more data is needed to make informed recommendations.

For all 14 genera/species in these trials, more information is needed because only 1 or 2 trials were conducted (Table 4).

Please see Table 5 for a summary of the individual trial results.
Table 1. List of Imazamox treated crops with no or minimal transitory injury.
None

Table 2. List of Imazamox treated crops with no injury at 1X but significant injury at 2X or 4X.
None

Table 3. List of Imazamox treated crops with significant injury.
None

Table 4. List of Imazamox treated crops where more information is needed.
Acer rubrum
Acer saccharum
Diospyros virginiana
Juglans nigra
Liquidamber styraciflua
Picea abies
Pinus taeda
Platanus sp.
Prunus serotina
Pseudotsuga menziesii
Quercus alba
Quercus palustris
Quercus rubra
Taxodium distichum
Table 5 Detailed Summary of Crop Safety Testing with Imazamox

Notes: Table entries are sorted by crop Latin name. Only those trials with research reports received by 12/15/2016 are listed below.

<table>
<thead>
<tr>
<th>PR#</th>
<th>Crop</th>
<th>Production Site</th>
<th>Researcher</th>
<th>State</th>
<th>Year</th>
<th>Application Type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>29230</td>
<td>Maple, Red (Acer rubrum)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2009</td>
<td>Over the top</td>
<td>Moderate injury with complete recovery at 0.031, 0.063 and 0.094 lb ai per acre; no significant growth reduction; all plants marketable.</td>
</tr>
<tr>
<td>29230</td>
<td>Maple, Red (Acer rubrum)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Severe crop injury with single application of 0.0.093 lb ai per acre and reduction in size for 0.0313, 0.0625, 0.093 lb ai per acre but all plants marketable.</td>
</tr>
<tr>
<td>29347</td>
<td>Maple, Sugar (Acer saccharum) A. saccharum Marsh</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>One application at 0.03125, 0.0625, and 0.0938 lb ai per acre caused severe but transient crop injury and reduction in height. 1x and 2x treated plants had no reduction in market value.</td>
</tr>
<tr>
<td>29357</td>
<td>Persimmon, Common (Non-Bearing) (Diospyros virginiana)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>A single application at 0.03135 to 8cm seedlings caused transient injury with reduced height but marketable. Plants treated 0.0625 and 0.0938 lb ai per acre were not marketable.</td>
</tr>
<tr>
<td>29350</td>
<td>Walnut (Non-Bearing) (Juglans sp.) J. nigra</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>No injury with 0.03125 but severe injury with .0625 and .0938. Stunting at all rates. Study should be repeated due to seedling blight disease.</td>
</tr>
<tr>
<td>29352</td>
<td>Sweetgum (Liquidambar styraciflua)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Severe injury and growth reduction with 0.031, 0.062, 0.093 lb ai per acre; 4x not marketable.</td>
</tr>
<tr>
<td>29355</td>
<td>Spruce, Norway (Picea abies) P. abies Karst.</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>A single application with 0.03125, 0.0625, 0.0938 lb ai per acre caused no crop injury but height reduction and reduction in marketability compared to untreated.</td>
</tr>
<tr>
<td>28148</td>
<td>Pine, Loblolly (Pinus taeda)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Severe crop injury and height reduction with 0.03125, 0.06250, 0.09375 lb ai per acre; 2x and 4x unmarketable.</td>
</tr>
<tr>
<td>29349</td>
<td>Plane Tree, Sycamore (Platanus sp.)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Severe crop injury with 0.031, 0.0625, 0.093 lb ai per acre with mortality from 2x and 4x.</td>
</tr>
<tr>
<td>29348</td>
<td>Cherry, Black (Non-Bearing) (Prunus serotina)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Slight to severe crop injury and mortality with 0.03125, 0.625, and 0.9375 lb ai per acre; unmarketable at 2x and 4x.</td>
</tr>
<tr>
<td>29354</td>
<td>Fir, Douglas (Pseudotsuga menziesii)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Severe crop injury and stunting (50%) with .0312, .0625, .0938 lb ai per acre. Effective control of marsh yellowcress and marestail.</td>
</tr>
<tr>
<td>29231</td>
<td>Oak, White (Quercus alba)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2009</td>
<td>Over the top</td>
<td>Significant injury with complete recovery at 0.031, 0.063 and 0.094 lb ai per acre; significant height reduction at 3X; all plants marketable.</td>
</tr>
<tr>
<td>29231</td>
<td>Oak, White (Quercus alba)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>No significant injury at 0.0313, 0.0625, and 0.0938 lb ai per acre, but the 3X rate were significantly shorter than the untreated.</td>
</tr>
<tr>
<td>29232</td>
<td>Oak, Pin (Quercus palustris)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2009</td>
<td>Over the top</td>
<td>Significant injury with complete recovery at 0.031, 0.063 and 0.094 lb ai per acre; no significant height reduction; all plants marketable.</td>
</tr>
<tr>
<td>PR#</td>
<td>Crop</td>
<td>Production Site</td>
<td>Researcher</td>
<td>State</td>
<td>Year</td>
<td>Application Type</td>
<td>Results</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-------</td>
<td>------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>29232</td>
<td>Oak, Pin (Quercus palustris)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Slight to moderate transient injury increasing with rate (0.0313, 0.0625, 0.0938 lb ai per acre) with stunting also increasing with rate; all plants marketable by 8 WAT.</td>
</tr>
<tr>
<td>29229</td>
<td>Oak, Northern Red (Quercus rubra)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>Very slight injury with 0.031, 0.061, 0.093 lb ai per acre; 2x severe height reduction (outlier). All plants marketable.</td>
</tr>
<tr>
<td>29356</td>
<td>Bald Cypress (Taxodium distichum)</td>
<td>Field In-Ground</td>
<td>Beste/Frank (ARS)</td>
<td>MD</td>
<td>2010</td>
<td>Over the top</td>
<td>One application at 0.03125, 0.0625, 0.0938 lb ai per acre resulted in severe crop injury and reduced marketability with 2x and 3x compared to control.</td>
</tr>
</tbody>
</table>
Appendix 1: Contributing Researchers

Dr. Ed Beste
University of Maryland
LESREC – Salisbury Facility
27664 Nanticoke Road
Salisbury, MD 21801

Dr. Ray Frank
retired
6916 Boyers Mill Road
New Market, MD 21774