US EPA Biopesticide Regulation

- U.S. EPA Office of Pesticide Programs
 - Registration Division & Science Divisions
 - Conventional chemical pesticides
 - Biopesticides & Pollution Prevention Division
 - multidisciplinary: Review Managers and Scientists
 - Biochemical Pesticides
 - Microbial Pesticides
 - Plant-Incorporated Protectants
 - www.epa.gov/pesticides/biopesticides
Biopesticides & Pollution Prevention Division

• Division Director: Janet Andersen
• Microbial Pesticide Branch Chief: Dennis Szuhay

• Senior Scientists
 – Toxicology/human health: John Kough
 – Ecological effects: Zigfridas Vaituzis

• Specialist scientists
 – Gene flow: Tessa Milofsky
 – Insect Resistance Management: Sharlene Matten
Plant Incorporated Protectants

- Regulated by USDA, FDA, and EPA
- New 40 CFR part 174
- System based on Sound Science and Transparency
- Regulation of both the Gene and the Pesticide Produced
- All Proteins thus far
Pesticides

- US Pesticide = any substance intended for mitigating a pest or intended for use as a plant regulator, defoliant, or desiccant
- Plant Incorporated Protectants = a pesticidal substance that is intended to be produced and used in a living plant, and the genetic material to produce it.
PIPs Process

- Transparency
- All applications announced in FR
- All non-cbi data publicly available during the review process
- Numerous public meetings and Science Advisory Panels
- Extensive Use of Website
Risk Assessment

- Hazard
 - Toxicity

- Exposure
 - Scale of use, use patterns, application rates
 - Persistence, degradation, mobility
 - Population dynamics, infectivity, gene transfer

- Risk
 - Non-targets, humans, endangered species, domestic animals
Data Submission for Protein Plant-Pesticides

- **Product Characterization**
 - source of the gene and expression system
 - nature of pesticidal substance
 - modifications to introduced trait
 - biology of recipient plant, stability of the introduced traits
 - test substance equivalence

- **Toxicology**
 - acute oral toxicity
 - mode of action
 - allergenicity screening

- **Exposure & Non-target Effects**
Testing of PIPs

- Product characterization
 - Source of the genes
 - What protein(s) are made
 - Expression - In what parts of the plant are the proteins found and at what level
 - Includes review of any marker genes
Testing PIPs (continued)

• Human health
 – Exact structure of the protein including amino acid sequence
 – Similarity of this protein to any known toxin or allergen
 – Toxicity testing—feeding the protein to mice
 – Stability/breakdown of protein in digestive fluids
Testing PIPs (continued)

- Ecological effects
 - Effects on non-target organisms
 - birds
 - fish
 - aquatics
 - invertebrates
 - Endangered Species
 - Monitoring
Testing PIPs (continued)

- Environmental fate
 - Protein expression
 - Protein persistence and degradation
 - Gene transfer
EPA Tox-Assessment Data
Mode of Action: Pore Forming Toxin

Cry1Ab

Swiss-3Dimage
EPA Eco-Assessment Data

• Cry1Ab
 – Acute oral mice
 • no effect >4000mg/kg
 • no effect >3280mg/kg
 • no effect >5050mg/kg
 – Acute oral quail
 • no effect >100,000ppm (Corn meal)
 • no effect >2000mg
 – Catfish
 • no effect at 100% of diet (Corn meal)
EPA Eco-Assessment Data

- Cry1Ab (continued)
 - Daphnia
 - no effect > 150mg/l
 - Green lacewing larvae
 - no effect > 20ppm
 - Parasitic wasp
 - no effect > 20ppm
 - Ladybird beetle
 - no effect > 20ppm
 - no effect (in pollen)
EPA Eco-Assessment Data

• Cry1Ab (continued)
 – Honey bee
 • Adult no effect > 20ppm
 • Larvae no effect > 20ppm
 • Larvae no effect (in pollen)
 – Collembola
 • no effect > 200ppm
 • LD$_{50}$ 240mg/kg/soil NOEL 125mg/kg/soil
 – Earthworm
 • nontoxic > 200ppm
 • nontoxic
EPA Eco-Assessment Data

• Cry1Ab Expression Data
 – Degradation – Bioactivity half life
 • Pure Cry1Ab plus soil 8.3 days
 • Cry1Ab expressed in corn - 25.6 days
 • Cry1Ab in corn plus soil 1.6 days
EPA Eco-Assessment Data

• Cry1Ab Expression Data
 – Expression levels – avg. protein ug/g fresh tissue from corn

<table>
<thead>
<tr>
<th></th>
<th>Lab</th>
<th>Field</th>
<th>Construct 1 - Highest levels in seedlings, declined thereafter through senescence. No detectable levels in silage.</th>
<th>Construct 2 – Highest levels in leaves at physiological maturity (25 days), declining thereafter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>1.3</td>
<td>9.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollen</td>
<td>Not detectable</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed</td>
<td>0.57</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain</td>
<td>-</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole plant</td>
<td>1.77</td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Testing PIPs (continued)

- Resistance Management
 - EPA requires an insect resistance management (IRM) plan for each Bt product
 - Required reports on compliance and adoption
 - Research and monitoring requirements
Refugia and Buffers

- Side by side refuge

- Separated refuge

- Refuge combined with barriers
Cotton/B.t.

- **Hazard assessment**
 - Non-target species
 - Nontoxic to birds
 - Nontoxic to beneficial insects
 - wasps, lacewings, honeybees, ladybird beetles

- **Exposure Assessment**
 - no exposure to endangered species
 - estimated 1.44gm protein in soil/acre
 - undetectable in cottonseed meal
 - almost undetectable in pollen
 - not detectable in nectar
 - gene transfer to other plants (cotton)
 - wild/feral cotton: Arizona-sterile offspring
 - Hawaii, Everglades & Florida Keys
 - labeling: no commercial use
Registered Products

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Plant Type</th>
<th>Company</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt Cry3A</td>
<td>Potato</td>
<td>Monsanto</td>
<td>1995</td>
</tr>
<tr>
<td>Bt Cry1Ac</td>
<td>Cotton</td>
<td>Monsanto</td>
<td>1995</td>
</tr>
<tr>
<td>Bt Cry1Ab</td>
<td>Corn</td>
<td>Syngenta</td>
<td>1996/8</td>
</tr>
<tr>
<td>Bt Cry1Ab</td>
<td>Corn</td>
<td>Monsanto</td>
<td>1996</td>
</tr>
<tr>
<td>PLRV replicase/Cry3A</td>
<td>Potato</td>
<td>Monsanto</td>
<td>1998</td>
</tr>
<tr>
<td>Bt Cry1F</td>
<td>Corn</td>
<td>Dow/Mycogen</td>
<td>2001</td>
</tr>
<tr>
<td>Bt Cry1F</td>
<td>Corn</td>
<td>Pioneer/Dupont</td>
<td>2001</td>
</tr>
<tr>
<td>Bt Cry2Ab + Cry1Ac</td>
<td>Cotton</td>
<td>Monsanto</td>
<td>2002</td>
</tr>
<tr>
<td>Bt Cry3Bb1</td>
<td>Corn</td>
<td>Monsanto</td>
<td>2003</td>
</tr>
<tr>
<td>Bt Cry3Bb1 + Cry1Ab</td>
<td>Corn</td>
<td>Monsanto</td>
<td>2003</td>
</tr>
<tr>
<td>Bt Cry1Ac + Cry1F</td>
<td>Cotton</td>
<td>Dow</td>
<td>2004</td>
</tr>
<tr>
<td>Bt moCry1F</td>
<td>Corn</td>
<td>Dow/Mycogen</td>
<td>2005</td>
</tr>
<tr>
<td>Bt Cry34Ab1 + Cry35Ab1</td>
<td>Corn</td>
<td>Monsanto</td>
<td>2005</td>
</tr>
</tbody>
</table>
Benefits example

- Corn Rootworm control is the highest insecticide usage in the U.S.
- Many corn rootworm pesticides are of concern to the Agency. Incidents, Restricted Use Pesticides
- New Bt Corn Rootworm products offers substantial environmental benefits (Cry3Bb1 & Cry 34/35)
- Syngenta also has a pending corn rootworm product and there are two pending multiple pest products from Dow & Pioneer.
Conclusions

• EPA has a strong regulatory review process
 – Transparency
 – Sound Science

• EPA’s web site and other efforts keep the public informed about its decisions
 http://www.epa.gov/pesticides/

• The US Biotech Database lists products
 http://usbiotechtechreg Nbii.gov/